Comme nous l'avons déjà observé dans le cas de $\Phi_2\dot{P}=0$ et de $\Phi\dot{P}^{\bigcirc}_{\bigcirc H}$, l'analyse

des spectres RPE. de $\Phi_2 \dot{P} = S$ ne nécessite pas la participation des orbitales d du phosphore et il semble donc qu'une simple hybridation spn soit satisfaisante pour décrire les systèmes radicalaires étudiés.

BIBLIOGRAPHIE

- **[I]** *M. Geoffroy* & E.A.C. *Lucken,* Mol. Phys. 22, 257 (1971).
- [Z] *J.R. Morton,* Mol. Phys. *5,* 217 (1962).
- *[3]* G. *Peters,* J. Amer. chem. SOC. *82,* 4751 (1960).
- **[4]** *A. Abrugum* & *B. Bleaney,* Electron Paramagnetic Resonance of Transitions Ions (Clarendon) 1970.
- [5] *M. Geoffroy* & E.A.C. *Lucken,* Mol. Phys. *24,* **335** (1972).

[6] R.E. *Watson* & *A. J. Freeman,* Phys. Rev. *124,* 117 **(1961).**

152. C (8) Epimeric 8-Hydroxy-erythromycins-B

by **Paul Kurath, Jerry R. Martin, Jack Tadanier, Alma W. Goldstein, Richard** *S.* **Egan** and **Daniel A. Dunnigan**

Division of Antibiotics and Natural Products

A bbott Laboratories, North Chicago, Illinois *60064,* USA

(9. IV. 73)

Zusammenfassung. Die gepufferte **m-Chlorperbenzoesaure-Epoxydation** von 8,g-Anhydro**erythromycin-B-6.9-hemiacetal** liefert nach der Reduktion der N-Oxidgruppe stereoselektiv das *(8 S,* 9 **.'5)-8,9-Anhydro-erythromycin-B-6,9-hemiacetal-8,9-epoxid** nebst einer geringen Menge des *8-epi-(8 R,* 9 **R)-8,9-Anhydro-erythromycin-B-6,9-hemiacetal-S,** 9-epoxids. Die beiden Epoxide reagieren in wasseriger Essigsaure-Losung unter Wasseranlagerung stereospezifisch zum entsprechenden (8 S)-8-Hydroxy-erythromycin-B, beziehungsweise zum 8-epi-(8 R)-8-Hydroxyerythromycin-B.

The extension of the hydrogen peroxide/osmium tetroxide oxidation of 8,9-an**hydro-erythronolide-B-6,9-hemiacetal** [l] to the N-oxide of 8, g-anhydro-erythromycin-B-6,9-hemiacetal **(1)** afforded a reaction mixture which contained at least three reaction products **[2].** Reduction of the above crude N-oxide mixture over PdjC followed by separation of the reaction products by chromatography led to the isolation of three compounds which were found to be *(8S,* 9S)-8, g-anhydro-erythro**mycin-B-6,9-hemiacetal-8,9-epoxide (2), 8,9-seco-8-oxo-erythromycin-B-9-oic-acid-**6,g-lactone **(4),** and (8S)-8-hydroxy-erythromycin-B **(5) [2].**

We now report that a two-phase oxidation of **8,9-anhydro-erythromycin-B-6,9** hemiacetal **(1)** *[3]* with m-chloroperbenzoic acid in chloroform stirred vigorously in the presence of an aqueous **5%** sodium hydrogen carbonate solution yielded, after reduction of the excess peracid with cyclohexene, and catalytic reduction of the resulting N-oxide mixture, the stereoselective oxidation product *(8S,* 9S)-8,9-anhy**dro-erythromycin-B-6,9-hemiacetal-8,9-epoxide (2)** together with a small amount of the diastereomeric 8-epi-(8R, 9R)-8, 9-anhydro-erythromycin-B-6, 9-hemiacetal-8, 9epoxide $(3)^1$). In aqueous acetic acid, the epoxides 2 and 3 were stereospecifically converted to (8S)-8-hydroxy-erythromycin-B (5) and 8 -epi-(8R)-8-hydroxy-erythromycin-B (6), respectively²).

The stereospecific conversions of *2* to **5** and **3** to *6* may be explained by cleavages of the C(9) epoxide bonds of the protonated epoxides **2** and **3** to form the resonance stabilized C(8) epimeric oxonium ions *2'* and **3'** which then react with water to yield the corresponding C(8) epimeric 8-hydroxy-erythromycins-B, **5** and *6,* respectively.

Structural Assignments. The oxidation products *2* and **3** did not exhibit UV. maxima at 209 nm characteristic of **1 [3].** This observation, together with the finding that **2** and **3** contained one more oxygen atom than **1,** led to their formulation as 8,g-epoxides. These structural assignments are analogous to that previously reported for the m-chloroperbenzoic acid oxidation product of **8,9-anhydro-erythronolde-B-**6,g-hemiacetal **[l].**

The study of the 100 MHz NMR. spectra of the epoxides **2** and **3** provided evidence for the 8,g-epoxide structures assigned to these compounds. The spectra of the two products **(2** and **3)** isolated from the oxidation reaction were nearly identical. Comparison of chemical shifts and coupling constants with those of the enol ether starting material **1** (Table) revealed many striking similarities, especially in the magnitude of the aglycone ring coupling constants. The small magnitude of $J_{2,3}$ and the large value of $J_{10,11}$ in both oxidation products parallel the observed couplings in the enol ether **1,** but not in erythromycin B. These distinctive similarities require structural

¹⁾ The use of the prefix *8-epi* denotes unnatural orientation **of** the C(8) methyl group in the erythromycin structure. The configurational notation of macrolidcs used in this publication is different from that used previously at positions **3,** 6, 10, and 13. This change at the inward directed bonds has been made to conform to the notation used by *Celmer* **[4]** *(cf.* **[j]).**

When the epoxidation -N-oxide reduction sequence **was** carried out in the absencc of a buffer to remove the m-chlorobenzoic acid generatcd, and without destruction of the excess peracid prior to catalytic reduction, partition column chromatography yielded directly **180/, of 2,** 22% of *5,* and 5% **of** *6.* **3)**

and conformational relationships to the enol ether **1** which can only be satisfied by the epoxide hemiacetal structures *2* and **3.**

Noteworthy is the fact that there is virtually no difference in the chemical shifts of the C(6) methyl protons of the two diastereomeric epoxides, although in the case of **2** the $C(6)$ methyl is *cis* to the anisotropic epoxide ring while in **3** the $C(6)$ methyl is *trans* to the epoxide ring. **A** similar lack of dependence of the chemical shifts of the C(19) methyl resonances on the stereochemistry of the diastereomeric 5α , 6α - and *5@,* 6@-epoxysteroids has been reported [6], however.

Examination of a molecular model of **8,9-anhydro-erythromycin-B-6,9-hemi**acetal **(1)** suggested that the predominant formation of the (SS, 9S)-8,9-epoxide *2* is a consequence of the favored approach of the epoxidizing reagent from the more accessible face of the 8,9-double bond of 1. This has analogy in the kinetically controlled formation in aqueous acid of erythromycin-B from the enol ether **1** in which the protonating agent approaches from the more accessible side of the enol ether double bond [3], *i.e.*, the same side as that preferred by the epoxidizing agent. That the stereospecific conversion of **1** to erythromycin-B is indeed kinetically controlled was shown by the fact that prolonged treatment of erythromycin-B with aqueous acid led to a mixture containing almost equal amounts **of** erythromycin-B and *8-epi*erythromycin-B [5]. The minor epoxidation product of 1 is the diastereomeric 8-epi-(8 *R,* **9R)-8,9-anhydro-erythromycin-B-6,9-hemiacetal-8,9-epoxide (3).** The acid catalyzed stereospecific conversion of the epoxides *2* (8S,9S) and **3** *(8R,9R)* to the C(8) epimeric 8-hydroxyketones **5** (8s) and **6** *(SR),* respectively, further supported the stereochemical assignments of *2* and **3.**

The **NMR.** spectrum of the hydroxyketone **5,** derived from the predominant epoxide *2,* exhibited two singlet methyl resonances below 1.3 ppm and an AB quartet for the $C(7)$ methylene protons (Table) indicating that substitution at $C(8)$ had occurred. The chemical shifts and coupling constants of the aglycone ring protons correlate well with those of erythromycin-B and thereby support a close structural similarity which is possible only if this oxidation product is an 8-hydroxy-erythromycin-B.

The NMR. spectrum of the hydroxyketone **6,** derived from the epoxide **3,** showed a duality of resonances indicative of a mixture of two components in chloroform-d, pyridine- d_5 , or methanol- d_4 solution. In each case, and particularly in pyridine- d_5 where the effect was most pronounced, it was found that there was a temperature dependent reversible change in the proportions of the two components. This phenomenon suggested that the two components were the hydroxyketone **6** and hemiacetal **6a** tautomers of 8 - $e\dot{p}i$ - $(8R)$ - 8 -hydroxy-erythromycin-B. Unfortunately, the complexity of the spectrum precluded a detailed analysis of the aglycone ring proton resonances.

In a previous study **[l]** the invariance of the spectral parameters of erythronolide-B and **(8S)-8-hydroxy-erythronolide-B** was used as evidence for their conformational **3,** and configurational homogeneity. **A** similar comparison between erythromycin-B and (8s)-8-hydroxy-erythromycin-B **(5)** (Table) supports the conclusion that these compounds are likewise related, thereby assigning the (8s)-configuration to this epimer.

³) For discussions of macrolide conformations see Ref. [11]-[13] in [1].

Molecular models reveal that **(8S)-8-hydroxy-erythromycin-B (5)** suffers no destabilizing interactions which should cause a conformational change. However, epimerization of C(8) leading to the (8R)-8-hydroxyketone **6** creates an unfavorable syn-periplanar interaction between the $C(6)$ and $C(8)$ -epi-methyl groups. A conformational reorganization in which the $C(6)$ to $C(8)$ ring segment is flattened relieves this interaction and facilitates the formation of the five-membered ring hemiacetal **6 a.** The syn-periplanar interaction between the $C(8)$ hydroxyl and the $C(6)$ methyl groups of **5,** on the other hand, would be less due to the significantly smaller size of a hydroxyl group [7].

Another case in which the **hydroxyketone-hemiacetal** tautomerism is affected by the configuration at $C(8)$ is provided by the $C(8)$ epimeric 11,12-epoxy-erythromycins-

	Chemical shifts					Erythro-		Coupling constants				Erythro-
	1	$\mathbf{2}$	3	5	6	$mvcin-B$		1	$\mathbf{2}$	3	5	m _y cin-B
(2)	2.70	2.71	2.72	2.91		2.87	J _{2,3}	3.0	2.7	3.0	9.3	8.3
$\mathbb{I}(3)$	4.11	4.31	4.30	3.96		4.07	J _{3.4}	(2.5a)	2.7	3.0	3.0	\sim 1
(5)	3.90	3.86	3.86	3.50		3.60	J _{4,5}	7.5	7.7	7.8	6.2	7.0
(7a)	2.65	2.03	2.08	2.14		2.00	J7a, 7e	14.5	13.8	13.8	D)	15.0
(7e)	1.93	1.76	1.86	2.14		$\overline{}$	J10, 11	(8.5 ^a)	7.5	8.0	1.2	\sim 1
(10)	2.59	\sim 3.2	\sim 3.3	3.03		2.98	J11, 12	(8.5 ^a)	11.2	11.2	9.5	9.8
(11)	3.34	4.15	4.23	3.84		3.83	J12, 13	$1.5a$)	3.2	3.5	1.0	\sim 1
(13)	5.16	4.60	4.62	5.39		5.35	J13, 14	7.5	6.9	7.0	8.5	9.0
							J13, 14	5.5	6.9	7.0	5.5	5.5
(1')	4.43	4.42	4.43	4.42		4.43						
(2')	3.19	3.19	3.18	3.29		3.21						
(1'')	5.10	5.11	5.13	4.88		4.89	J_1 '.2'	7.5	7.2	7.2	7.2	7.0
(4")	3.03	3.02	3.03	2.98		3.00	$J_2', 3'$	10.0	10.0	10.0	10.0	10.2
(5")	4.11	4.09	4.10	4.04		4.05						
$H_{a}(6)$	(1.35	(1.42)	1.42	1.38	1.33	1.47	J_1 ". 2a"	(4.5 ^a)	5.0	5.0	4.5	4.5
$H_3(8)$	1.56	1.54	1.36	1.68	1.52	1.14	J_1 ", 2e"	$1.0^{\rm a}$ \sim 1		\sim 1	\sim 1	1.5
					1.55		J_4 ".5"	9.5	9.0	10.0	9.0	9.0
CH,	3.35	3.36	3.36	3.30	3.26	3.32						
${\rm (CH_3)_2}$	2.28	2.27	2.28	2.29	2.27	2.30						

Nuclear Magnetic Resonance Parameters

Measured in pyridine- d_{κ} solution.

Chemical shift equivalence prevents determination.

A [S]. **8-epi-11,12-Epoxy-erythromycin-A,** which in the hydroxyketone form would have a syn-periplanar interaction between the $C(6)$ and $C(8)$ -epi-methyl groups, was found to exist exclusively as the hemiacetal tautomer. In contrast, 11,12-epoxyerythromycin-A was found to be isolable as an interconvertible mixture of hydroxyketone and hemiacetal tautomers. That conformational factors other than the steric interactions between the $C(6)$ and $C(8)$ -e pi -methyl groups, influence hydroxyketonehemiacetal tautomerism, however, is indicated by the fact that 8-epi-erythromycin-B [5] exists exclusively as the hydroxyketone.

The UV. and **CD.4)** spectra of (8s)-8-hydroxy-erythromycin-B **(5)** confirmed the stereochemical assignment at C(8). The observation of a hypsochromic shift of the carbonyl absorption in the UV. spectrum of $5 (\lambda_{\text{max}} = 280 \text{ nm}, \varepsilon = 36)$ relative to the corresponding absorption of erythromycin-B ($\lambda_{\text{max}} = 288$ nm, $\varepsilon = 40$ [9]) required that the 8-hydroxy group in **5** be equatorial 1101. The comparison of the methanol solution CD. spectra of the α -hydroxyketone **5** ($[\theta]_{283} = -9615$, $[\theta]_{218} = -3085$) and erythromycin-B ($[\theta]_{288} = -10810$, $[\theta]_{210} = -3620$ [11]) likewise supports the equatorial assignment of the 8-hydroxyl group in 5 [12] [1]. These findings, together with the NMK. evidence presented above, allow the conclusion that the (8s)-8-hydroxyerythromycin-B exists in the keto form **5** rather than the hemiacetal form **5a** at ambient temperature.

An end absorption in the UV. spectrum of $8\text{-}epi-(8R)$ -8-hydroxy-erythromycin-B **(6)** around 300 nm precluded the observation of the keto carbonyl absorption. However, the cyclohexane solution CD. spectra of 6 $([\theta]_{295} = -4254$, $[\theta]_{228} = -2500$ and 8-epi-erythromycin-B [5] $((0)_{290} = -11676)^5$ revealed the expected bathochromic shift of the keto carbonyl absorption $[12]$ of the axial α -hydroxyketone 6 when compared **to** the corresponding 8-epi-erythromycin-B keto carbonyl absorption. Due to the tautomerism between the keto form **6** and the hemiacetal form **6a** which was manifested in the NMR. spectra of **8-epz-(811)-8-hydroxy-erythromycin-B** *(6)* only the position and sign of the CD. curve are significant, but not the intensity. The partial conformational structures **5'** and **6'** illustrate the stereochemical relationships at C(8) of **5** and **6.**

In the mass spectra of the C(8) epimeric 8-hydroxyketones **5** and **6** the molecular ions at m/e 733 exhibited signals of low intensity which could not be peak matched. The high resolution spectra of 5 and **6** further supported the structural assignments of these substances. The ions **a** $(C_{14}H_{25}O_4; 1.36\%)$ and **d** $(C_{14}H_{25}O_4; 0.67\%)$ of m/e 257 arose by a-cleavages of the 5,6-bonds of the *McLaffeerty-* rearrangement products of the molecular ions6) of the hemiacetals **5a** and **6a,** respectively. The sequential loss of two molecules of water from **a** and **d** resulted in fragments at m/e 239 ($C_{14}H_{23}O_3$; 3.81% and 3.08%, respectively) and at m/e 221 (C₁₄H₂₁O₂; 0.86% and 1.49%, respectively). The ions **b** of m/e 181 (C₁₁H₁₇O₂; 0.50%) derived from the rearranged hydroxyketone **5** by a-cleavage of the 7,S-bond and dehydration, together with the observa- .

[&]amp;) The authors arc indebted to Drs. *L. A. ilfitscher* and G. *W. Clurk of* the Ohio State University, Columbus, Ohio **43210,** USA, for recording and interpretation of the circular dichroism spectra.

^{5,} The CD. maximum of the lactone carbonyl could not be observed.

G, All the ions of particular interest for the structure proof arose from the *McLafferty*-rearrangement ions of 5 and 6. The rearrangement was formulated in footnote²) of [1]; see also [13].

tion of a signal for **c** of m/e 155 ($C_9H_{15}O_2$; 0.43%) arising from a similar cleavage of the 8,9-bond, clearly located the newly introduced hydroxyl group **of 5** at *C(8).* The ions **b** of m/e 181 $(C_{11}H_{17}O_2; 0.27\%)$ and **e** of m/e 137 $(C_9H_{13}O; 0.22\%)$ which resulted from the electron impact fragmentation of the McLafferty-rearrangement product of the molecular ion **of** *6* located the additional hydroxyl group of the latter at *C(8).* Other fragments which were indicated in the mass spectra of **5** and **6** arose from a-cleavages of the C, C-bonds next to functional groups of the macrolide ring such as the ion **f** of m/e 99 ($C₆H₁₁O$) the signal of which was observed in the spectra of both **5** and **6** in relative abundances of 7.27% and 5.74% , respectively, as well as fragments arising from the sugar residues **[13].**

Biological activity. Compounds *2-6* had poor *in vitro* antimicrobial activity against a variety of micro-organisms. **(8s)-8-Hydroxy-erythromycin-B (5)** had about 15% of the activity of erythromycin-B against *Staphylococci*, while 8-epi-(8R)-8-hydroxyerythromycin-B *(6)* was almost inactive.

The authors are indebted to Mrs. *Sandra L. Mueller* for mass spectra, to Mrs. *Ruth Stanaszek* for assistancc in obtaining the NMR. spectra, to Mr. *W. N. Washburn* for the IR. spectra, to Mr. *J. Raihle* for the **UV.** spectra, to Mr. *J. B. Holland* for assistance with the catalytic hydrogenations, to Mrs. *Julie Hood* for microanalysis, and to Mrs. *Esther Hivner* for tcchnical assistance. Wc thank **Mrs.** *Charlene Vojtko* for biological results. We wish to thank Dr. *P. Beak* and Dr. *L. A. Mitscher* for stimulating discussions.

Experimental Part

General Hemarks. Melting points were taken on a *Fisher- Johns* mclthg point apparatus. UV. spcctra were rccordcd with methanol solutions employing a *Beckman Acta* 5 spectrophotometer using the expanded scale. Optical rotations were measured in methanol solutions with a *Hilger* and *Watts* polarimeter. IR. spectra were recorded in deutcriochloroform solutions on a *Perkin-* Elmer Model 521 grating Spectrometer. CD. spectra were obtained with a *Durrum- Jasco* Modcl ORD/UV-5 instrument equipped with a CD. attachment and opcrating at ambient temperaturcs in spectral grade solvents. Mass spectra were recordcd with an *A.E.I.* MS-902 mass spectrometcr with an ionization energy of 70 eV; samples were introduced into the source by a direct inlet system. NMR. spectra were determined at 100 MHz using a *Varian* HA-100 spectrometer in deuteriochloroform unless stated otherwise; chemical shifts were reported in ppm from internal tetramethylsilane (0 **S),** and coupling constants were reported in **Hz.** Silica gel 60 (Merck, Darmstadt) was uscd in the partition chromatography [14].

m-Chloroperbenzoic *Acid Oxidation of 8,9-Anhydro-erythromycin-B-6,9-Hemiacetal* (1). To a stirred solution of 4.04g of **8,9-anhydro-erythromycin-B-6,9-hemiacetal(l)** in 100 ml of chloroform was added 160 ml of 5% aqueous sodium hydrogen carbonate. **A** freshly prepared solution of 4.06 g of m-chloroperbenzoic acid in 50 ml of chloroform was added dropwise to the vigorously stirred mixture. After stirring at room temperature for 21 h. a solution preparcd from 10 ml *o€* cyclohexenc and 40 ml of chloroform was added dropwise. Stirring was continued for 5 h.; the resulting mixture was shaken with a solution of chloroform and 5% aqueous sodium hydrogen carbonate. The chloroform extract was washed with water, the chloroform was evaporated under reduced pressure, and the last traces of chloroform were removed by co-distillation with benzene under vacuum⁷) to leave 3.90 g of a mixture of $(8S, 9S)$ -8,9-anhydro-erythromycin-B-6,9-hemiacetal-8,9-epoxide and 8-epi-(8 R, 9 R)-8,9-anhydro-erythromycin -B-6,9-hemiacetal-8,9-epoxide as the N-oxides.

A solution of 3.79 g of the crude N-oxide mixture in 250 in1 of ethanol was reduced ovcr 1.20 g of 5% Pd/C. The catalyst was collected on a filter and the resulting ethanol solution was treated with Darco **G** 60 and filtered through a Celite mat. The filtrate was concentrated to about 50 ml under reduced pressure, and shaken with a mixture of 400 ml of chloroform and 300 ml of 5% aqueous sodium hydrogen carbonate. The chloroform solution was washed with watcr and the organic solution was evaporated under reduced pressure to yield 3.71 **g** of a whitc foam. **A** part of the latter, 3.60 g, was chromatographed on a partition column $(5.8 \text{ cm} \times 70 \text{ cm})$ to yield 0.20 g of pure 8-epi-($8R,9R$)-8, 9-anhydro-erythromycin-B-6, 9-hemiacetal-8, 9-epoxide (3) in the early fractions. The compound had $\alpha]_D^{34} = -41^{\circ}$ (c = 1.04); $\tilde{\nu}_{\text{max}}$ 3630-3360 (broad, irregular), 1718 cm-l; no UV. maximum between 200 and 350 nm. **A** sample was recrystallized from methanol/ water: m.p. 205-206".

C₃₇H₆₅NO₁₂ (715.898) Calc. C 62.07 H 9.15 N 1.96% Found C 62.17 H 9.43 N 1.96%

Further elution of the column and evaporation of thc fractions resulted in the isolation of 1.52 g of $(8\text{ S}, 9\text{ S})$ -8,9-anhydro-erythromycin-B-6,9-hemiacetal-8,9-epoxide (2) . This product was crystallizcd from methanol/watcr to yield 1.24 g of **2,** m.p. 228-230". **A** part of this substance was recrystallized from methanol and dried under high vacuum at 137° for anaiysis: m.p. $228-229^{\circ}$; $\lbrack \alpha \rbrack_{D}^{24} = -26^{\circ}$ (c = 0.97); $\tilde{\nu}_{\text{max}}$ 3610, 3560, 3440 (broad), 1725 cm⁻¹; no UV. maximum between 200 and 350 nm.

 $\mathrm{C_{37}H_{65}NO_{12}\cdot CH_{3}OH}$ Calc. C 61.02 H 9.29 N 1.87 O 27.81% (747.940) Found ,, 61.03 ,, 9.36 ,, 1.84 ,, 27.98%

 $(8 S)$ -8-Hydroxy-erythromycin-B (5). To a freshly prepared solution of 0.60 g of $(8 S, 9 S)$ -8,9**anhydro-erythromycin-B-6,9-hemiacetal-8,9-epoxide** *(2)* in 10 ml of acetic acid was added 10 ml of water, and the reaction mixture was allowed to stand at room temperature for 4 h. The above solution was slowly added to 150 ml **of** a saturated sodium hydrogen carbonate solution containing excess solid potassium carbonate. The resulting mixturc was cxtracted with two 100-ml portions of chloroform. The combined chloroform solution was washed with three 75-ml portions of water, dried over anhydrous magnesium sulfate, filtered, and evaporated to leave 0.60 g of crude *(8S)-8* hydroxy-erythromycin-B *(5).* The substance was purified by silica gel partition chromatography. Elution of the column $(3.5 \text{ cm} \times 75 \text{ cm})$ and evaporation of the fractions containing 5 gave a colorless residue which was dissolved in 50 ml of chloroform and the residual inorganic salts werc removed by three washes with 50-ml portions of water. The chloroform solution was dried over anhydrous magnesium sulfate, filtered, and evaporated to leave 0.45 g of pure *5.*

⁷⁾ The presence of chloroform during hydrogenation results in the formation of hydrochloric acid [15] in quantities which in some cases caused degradation of erythromycin derivatives.

Crystallization from ether/hexane gave an analytical sample, m.p. 210-212°; $[\alpha]_D^{25} = -74^\circ$ $(c = 1.07)$; $\tilde{\mathbf{v}}_{\text{max}}$ 3607, 3540 (broad), 3450 (broad), 1723 cm⁻¹; λ_{max} 280 nm $(\epsilon = 36)$.

C37H,7N0,3 **(733.914)** Calc. C **60.55** H **9.20 N 1.91%** Found C **60.35** H **9.26** N **1.75%** 8-epi-(8R)-8-Hydroxy-erythromycin-B (6) was prepared by treatment of 8-epi-(8R, 9R)-8, 9**anhydro-erythromycin-B-6,9-hemiacetal-8,9-epoxide (3)** with aqueous acetic acid as described above for the preparation of 5.8-epi-(8R, 9R)-8, 9-Anhydro-erythromycin-B-6, 9-hemiacetal-8, 9cpoxide **(3)** (0.20 *g)* thus treated afforded after partition chromatography **0.11** *g* of pure *8-epi-* $(8R)$ -8-hydroxy-erythromycin-B **(6)** as a colorless foam; $[\alpha]_D^{24} = -55^\circ$ $(c = 1.03)$; $\tilde{\nu}_{\text{max}}$ 3630-3300 (broad, irregular), **1707** cm-l; the **UV.** spectrum showed only end absorption around **300** nm and a shoulder at 280 nm $(\epsilon = 45)$.

C37H,7N0,, **(733.914)** Calc. C **60.55** H **9.20** N **1.91%** Found C **60.31** H **9.42** N **1.77%**

REFERENCES

- **[l]** *P. Kurath* & *R. S. Egan,* Helv. *54,* **523 (1971).**
- **[2]** *P. Kurath,* **U.** *S.* Pat. **3,674,773** (July **4, 1972).**
- **[3]** *P. Kzcrath, P. H. Jones, R. S. Egan* & *T. J. Perun,* Experientia *27,* **362 (1971).**
- **141** *W. D. Celrner,* Pure and Appl. Chemistry *28,* **413 (1971).**
- **[5]** *J. Tadanier, J. R. Martin, R. S. Egan, A. Goldstein, E. Hirner* & *F. Fischer,* J. Amer. chem. SOC. *95,* **592 (1973).**
- **[6]** *K. Tori, T. Korneno* & *T. Nukagawa,* J. org. Chemistry *29,* **1136 (1964).**
- **[7]** *J. A. Hirsch,* 'Topics in Stereochemistry' (Eds. *N. L. Allinger* & *E. L. Eliel),* Vol. **1,** Interscience Publishers, **New** York, N.Y. **1967,** pp. **199-222.**
- **[a]** *J. Tadanier, J. R. Martin, R. S. Egan, A. Goldstein, R. Stanaszek, E. Hirner* & *F. Fischer,* **J.** Amer. chem. SOC. *95,* **593 (1973).**
- [9] *P. F. Waley, M. V. Sigal, Jr., 0. Weauer, R. Monahan* & *K. Gerzon,* J. Amer. chem. SOC. *79,* **6070 (1957).**
- [lo] *C. Djerassi,* 'Optical Rotatory Dispersion', pp. **111-114,** McGraw-Hill Book Company, Inc., New York, N.Y. **1960.**
- **[ll]** *L. A. Mitscher, B. J. Sluter, T. J. Perun, P. H. Jones* & *J. R. Martin,* Tetrahedron Letters *1969,* **4505.**
- **[12]** *J. R. Bull* & *P.* R. *Enslin,* Tetrahedron *26,* **1525 (1970).**
- **[13]** *R. L. Foltz, L. A. Mitscher* & *M. I. Levenberg,* 17th Annual Conference on Mass Spectrometry and Allied Topics, May **18-23, 1969,** Dallas, Texas, Paper No. **119,** p. **343;** *L. A. Mitscher, H. L. Foltz* & *M. I. Levenberg,* Org. Mass Spectrom. **5, 1229 (1971).**
- **[14]** *N. L. Oleinick* & *J. W. Corcoran,* J. biol. Chemistry *244,* **727 (1969).**
- **[15]** *J. A. Secrist III* & *M. W. Logue,* J. org. Chemistry **37, 335 (1972).**

153. Etude conformationnelle dans l'approximation CNDO/BW: barrière de rotation interne de petites molécules organiques

par **Jacques Weber** et **Raymond Gerdil**

Département de Chimie Organique, Université de Genève, **30, quai** de YEcole-de-Mddecine, **1211** Genbve **4**

(13. IV. **73)**

Summary. The potential functions for internal rotation of several representative small organic molecules are calculated by the CNDO/BW method. For ethane, methanol, propylene, methylcyclopropane and ethylene the most stable conformation is predicted correctly, although too small a value is calculated for the height of the rotational barrier, with the exception of ethylene